Wednesday, February 29, 2012

Timer IC 555

555 timer IC


Internal block diagram
The 555 timer IC is an integrated circuit (chip) used in a variety of timer, pulse generation and oscillator applications. The 555 can be used to provide time delays, as an oscillator, and as a flip-flop element. Derivatives provide up to four timing circuits in one package.
Introduced in 1971 by Signetics, the 555 is still in widespread use, thanks to its ease of use, low price and good stability, and is now made by many companies in the original bipolar and also in low-power CMOS types. As of 2003, it was estimated that 1 billion units are manufactured every year.

Design

The IC was designed in 1971 by Hans R. Camenzind under contract to Signetics, which was later acquired by Philips.
Depending on the manufacturer, the standard 555 package includes 25 transistors, 2 diodes and 15 resistors on a silicon chip installed in an 8-pin mini dual-in-line package (DIP-8).Variants available include the 556 (a 14-pin DIP combining two 555s on one chip), and the two 558 & 559s (both a 16-pin DIP combining four slightly modified 555s with DIS & THR connected internally, and TR is falling edge sensitive instead of level sensitive). There is no 557.
The NE555 parts were commercial temperature range, 0 °C to +70 °C, and the SE555 part number designated the military temperature range, −55 °C to +125 °C. These were available in both high-reliability metal can (T package) and inexpensive epoxy plastic (V package) packages. Thus the full part numbers were NE555V, NE555T, SE555V, and SE555T. It has been hypothesized that the 555 got its name from the three 5  resistors used within, but Hans Camenzind has stated that the number was arbitrary.
Low-power versions of the 555 are also available, such as the 7555 and CMOS TLC555. The 7555 is designed to cause less supply glitching than the classic 555 and the manufacturer claims that it usually does not require a "control" capacitor and in many cases does not require a decoupling capacitor on the power supply. Such a practice should nevertheless be avoided, because noise produced by the timer or variation in power supply voltage might interfere with other parts of a circuit or influence its threshold voltages.

No comments:

Post a Comment